Road-related incidents are a leading cause of flood fatalities in the US, but the lack of adequate flood-reporting tools makes it challenging to assess road conditions in real time.
Existing tools such as traffic cameras, water-level sensors, and social media data can provide observations of flooding. However, they are often not primarily designed for sensing flood conditions on roads and do not work in conjunction.
A network of sensors could enhance awareness of flood levels, but operating them at scale is expensive.
Rice University engineers have developed a potential solution to this problem: an automated data fusion framework called OpenSafe Fusion.
Open source situational awareness
Short for Open Source Situational Awareness Framework for Mobility using Data Fusion, OpenSafe Fusion leverages existing individual reporting mechanisms and public data sources to sense quickly evolving road conditions during urban flooding events, which are becoming increasingly frequent.
Jamie Padgett, Rice’s Stanley C. Moore Professor in Engineering and chair of the Department of Civil and Environmental Engineering, together with Pranavesh Panakkal, a postdoctoral researcher in civil and environmental engineering, analyzed data from nine sources in Houston before developing the comprehensive framework for the automated data system in their research study titled “More eyes on the road: Sensing flooded roads by fusing real-time observations from public data sources,” published in the journal Reliability Engineering & System Safety.
“While sources directly observing flooded roads are limited, urban centers are replete with sources directly or indirectly observing flooding or road conditions,” Padgett said.
Padgett and Panakkal hypothesized that an automated system combining insights from these real-time sources could revolutionize flood situational awareness without significant investment in new sensors.
“This study offers communities a pathway to equitably sense and respond to urban stressors such as flooding using existing data sources,” Padgett said.
“It builds off of and is inspired by our longtime collaboration with colleagues in the SSPEED Center at Rice, who have been developing state-of-the-art flood alert systems. Here we focus on flood impacts on transportation infrastructure and focus on understanding how other data sources can complement information from flood models, especially with respect to impact on roadways and safe mobility.”
Machine learning and data fusion
The framework uses data from sources like traffic alerts, cameras, and even traffic speed and leverages machine learning and data fusion to predict whether a road is flooded.
The value of such data sources was evident during Hurricane Harvey in 2017. Many people in Houston — including emergency responders — resorted to manually examining data sources to infer probable road conditions to overcome the lack of reliable real-time road condition data.
To test the OpenSafe Fusion process, the researchers used historical flooding data observed during Harvey to recreate the scenario in the framework, consisting of around 62,000 roads in the Houston region.
“The model was able to observe around 37,000 road links, which is around 60% of the network that we considered, and that is a significant improvement,” Panakkal said.
Other data sources that could be used in the framework include water-level sensors, citizen portals, crowdsourcing, social media, flood models, and a factor the study calls “human-in-the-loop.”
Responsible AI
This last source is especially important, Panakkal says, as the human element of OpenSafe Fusion allows for the responsible use of artificial intelligence (AI).
“We do not want a fully automated system without any human control,” Panakkal said. “The model may make a wrong prediction, which could endanger community members who decide to risk travel based on this prediction.
So, we designed safeguards based on responsible AI usage. This need for responsible AI in such tools is still an open area for further work, and we hope to dig deeper as we test our methods in the future.”
The study also considered the impacts of flooding on community access to critical facilities such as hospitals and dialysis centers during natural disasters.
“This gives community members or emergency responders an understanding of which roads are flooded and how to safely navigate to a location,” Panakkal said.
Padgett says the researchers hope to pursue extensive testing, validation, and exploration of how communities with different scales and resource availability could use this framework to better sense road conditions during a flood.
“Considering climate change impacts and climate-exacerbated weather events, the frequency and intensity of flood events could increase in the future, so we need a solution to better respond to flood events and their impacts on infrastructure,” Padgett said.
NEWSLETTER
The Blueprint Daily
Stay up-to-date on engineering, tech, space, and science news with The Blueprint.
By clicking sign up, you confirm that you accept this site's Terms of Use and Privacy Policy
ABOUT THE EDITOR
Kapil Kajal Kapil Kajal is an award-winning journalist with a diverse portfolio spanning defense, politics, technology, crime, environment, human rights, and foreign policy. His work has been featured in publications such as Janes, National Geographic, Al Jazeera, Rest of World, Mongabay, and Nikkei. Kapil holds a dual bachelor's degree in Electrical, Electronics, and Communication Engineering and a master’s diploma in journalism from the Institute of Journalism and New Media in Bangalore.
0